Opened 5 years ago

Last modified 4 years ago

#247 new enhancement

update H2 grain catalysis rate

Reported by: Gary J. Ferland Owned by: nobody
Priority: major Milestone:
Component: chemical network Version: trunk
Keywords: Cc:

Description

this paper also uses the update grain catalysis theory now used in the meudon code

Title:	
	Full SED fitting with the KOSMA-\tau\ PDR code - I. Dust modelling
Authors:	
	Röllig, M.; Szczerba, R.; Ossenkopf, V.; Glück, C.
Publication:	
	eprint arXiv:1211.3546
Publication Date:	
	11/2012
Origin:	
	ARXIV
Keywords:	
	Astrophysics - Instrumentation and Methods for Astrophysics, Astrophysics - Galaxy Astrophysics
Comment:	
	accepted for publication in A&A; doi:10.1051/0004-6361/201118190
Bibliographic Code:	
	2012arXiv1211.3546R
Abstract
We revised the treatment of interstellar dust in the KOSMA-\tau\ 
PDR model code to achieve a consistent description of the 
dust-related physics in the code. The detailed knowledge of the 
dust properties is then used to compute the dust continuum emission 
together with the line emission of chemical species. We coupled the 
KOSMA-\tau\ PDR code with the MCDRT (multi component dust radiative 
transfer) code to solve the frequency-dependent radiative transfer 
equations and the thermal balance equation in a dusty clump under 
the assumption of spherical symmetry, assuming thermal equilibrium 
in calculating the dust temperatures, neglecting non-equilibrium 
effects. We updated the calculation of the photoelectric heating 
and extended the parametrization range for the photoelectric 
heating toward high densities and UV fields. We revised the 
computation of the H2 formation on grain surfaces to include the 
Eley-Rideal effect, thus allowing for high-temperature H2 
formation. We demonstrate how the different optical properties, 
temperatures, and heating and cooling capabilities of the grains 
influence the physical and chemical structure of a model cloud. The 
most influential modification is the treatment of H2 formation on 
grain surfaces that allows for chemisorption. This increases the 
total H2 formation significantly and the connected H2 formation 
heating provides a profound heating contribution in the outer 
layers of the model clumps. The contribution of PAH surfaces to the 
photoelectric heating and H2 formation provides a boost to the 
temperature of outer cloud layers, which is clearly traced by 
high-J CO lines. Increasing the fraction of small grains in the 
dust size distribution results in hotter gas in the outer cloud 
layers caused by more efficient heating and cooler cloud centers, 
which is in turn caused by the more efficient FUV extinction. 

Change History (1)

comment:1 Changed 4 years ago by Gary J. Ferland

Note: See TracTickets for help on using tickets.